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Abstract. A unitary transformation is introduced to determine the exact solution of the time-
dependent quantum system. As examples, two quantum systems with Hamiltonian including the
quadratic term of generators ofSU(1, 1) are solved analytically.

Since quantum mechanics was established, finding out the exact solutions of quantum
systems has been significant. Many approaches and skills for finding the stationary state of
quantum systems have been developed [1]. In contrast to this case, the studies of solving
time-dependent quantum systems are principally on the basis of perturbation approximation
and numerical computation [2]. However, there are many time-dependent quantum systems,
such as the time-dependent harmonic oscillator [3], the quantum motion of a particle in a
Paul trap [4], the interaction between atom and radiation [5], and the time-dependent shell
models [6], which have to be dealt with exactly or non-perturbativelly. Therefore, it is
very necessary and significant to develop non-perturbation and analytical approaches for
time-dependent quantum systems.

Some investigations for this purpose have been done. For a time-dependent system in
which the Hamiltonian is a linear function of operators of a Lie algebra, Wei and Norman
[7] showed that solving the corresponding time-dependent Schrödinger equation can be
transformed to solving a set of coupled second-order differential equations by introducing
the local evolution operators. In studying the time-dependent harmonic oscillator, Lewis
and Riesenfeld [8] developed the invariant operator method and showed that the general
solution of the time-dependent Schrödinger equation for the oscillator can be expressed as a
linear superposition of eigenstates of the invariant operator. Hagedornet al [9] studied the
connection between the classical and quantum motion of a system in which the Hamiltonian
is self-adjoint quadratic polynomial in coordinateq and momentump, and showed that
the spectrum of the Floquet operator is either a pure point or purely transient absolutely
continuous.

It is well known that group theory plays a powerful role in quantum mechanics [10].
When the stationary Schrödinger equation of a time-independent system is related to the
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Casimir operator of a Lie algebra by performing a proper transformation, the quantum
states of the system can be connected to the unitary representation of the corresponding
group. Not only can the bound states be determined, but also the scattering problem may
be studied by a group theory approach. Alhassidet al [11] researched the one-dimensional
Schr̈odinger equation with a Morse or Poschl–Teller potential by imbedding the original
one-dimensional problem into a two-dimensional space and connecting it with theSU(1, 1)
group. Generally, when the Hamiltonian of a time-independent system can be written as a
function of operators of a Lie algebra, the method of group theory may also be powerful
in calculating various physical quantities of the system. The studies of time-dependent
quantum systems in which the Hamiltonians are linear functions of operators ofsu(1, 1) or
su(2) algebra have been performed by means of the algebraic dynamics approach [12]. The
success of these studies stimulates us to apply this approach to a time-dependent quantum
system in which the Hamiltonian is a nonlinear function of operators of a Lie algebra. Since
the nonlinear case is very challenging, as the first step of attack, in this paper we will study
two examples in which the Hamiltonians include the quadratic term of the operators of
su(1, 1).

For a time-dependent quantum system, the state vector evolves in time according to the
Schr̈odinger equation

i∂t9(r, t) = Ĥ (r̂, p̂, t)9(r, t) (1)

where we take ¯h = 1. In order to solve the equation, let us introduce a transformation

9(r, t) = U(r̂, p̂, t)9 ′(r, t) (2)

with U(r̂, p̂, 0) = 1. Substituting (2) into (1), we obtain

i∂t9
′(r, t) = Ĥ ′(r̂, p̂, t)9 ′(r, t) (3)

in which

Ĥ ′(r̂, p̂, t) = U−1ĤU − iU−1∂tU. (4)

The above expression is often called a unitary transformation. With the proper choice of
transformationU , we may make the transformed HamiltonianĤ ′ possessing the following
form,

Ĥ ′(r̂, p̂, t) = f (t)Ĥ0(r̂, p̂) (5)

where Ĥ0 is time-independent andf (t) is a function of time. If the solutions of the
eigenequation ofĤ0,

Ĥ0φn = Enφn (6)

are found, the general solution of (3) can be written as

9 ′(r, t) =
∑
n

Cn exp

[
− iEn

∫ t

0
dσf (σ)

]
φn(r) (7)

whereCn are time-independent superposition coefficients to be determined by the initial
condition for9(r, t). Then, we obtain the general solution of equation (1):

9(r, t) =
∑
n

Cn exp

[
− iEn

∫ t

0
dσf (σ)

]
U(r̂, p̂, t)φn(r). (8)

Suppose that the system is in thekth eigenstate ofĤ0 initially, at time t the system
evolves to the state

9(r, t) = exp

[
− iEk

∫ t

0
dσf (σ)

]
U(r̂, p̂, t)φk(r). (9)
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The expectation value of̂H in (9) is

E(t) = 〈9(r, t)|Ĥ |9(r, t)〉
〈9(r, t)|9(r, t)〉 = f (t)Ek + i

〈φk|U+∂tU |φh〉
〈φk|U+U |φk〉 . (10)

Therefore, the dynamic phase acquired in the evolution fromt = 0 to T is

θd =
∫ T

0
E(t) dt = Ek

∫ T

0
f (t) dt + i

∫ T

0
dt

〈φk|U+∂tU |φk〉
〈φk|U+U |φk〉 . (11)

If U(r̂, p̂, T + t) = U(r̂, p̂, t), from (9), the total phase acquired over a periodT is given
by

θt = −
∫ t

0
Ekf (σ ) dσ. (12)

Thus, the non-adiabatic Berry phase [13] is

θB = θt + θd = i
∫ T

0
dt

〈φk|U+∂tU |φk〉
〈φk|U+U |φk〉 . (13)

We see that the Berry phase is determined totally by the unitary transformation.
In the following section, we will apply the above general formalism to two time-

dependent systems in which the Hamiltonians include the quadratic term of the generators
of su(1, 1).

Firstly, let us consider the time-dependent quantum system with the Hamiltonian

Ĥ = A1(t)Î0Î− + iB1Î0 + C1(t) (14)

in which A1(t), B1(t) are real functions oft andC1(t) is a complex function oft , and Î0,
Î± constitute asu(1, 1) algebra. For this system, we consider the transformation

U1 = exp{u1Î0Î− + v1} (15)

whereu1(t) andv1(t) are two functions oft to be determined. Using (4) and (14), one has

Ĥ ′ = (iu̇1 − iB1ui + A1)Î0Î− + iBÎ0 + iv̇1 + C1 (16)

in which u̇1(t) andv̇1(t) stand for the differentiation ofu1(t) andv1(t) with respect to time.
If u1(t) andv1(t) satisfy the equations

iu̇1(t)− iB1(t)u1(t)+ A1(t) = 0 (17)

iv̇1(t)+ C1(t) = i 1
2B1(t) (18)

the Hamiltonian (19) becomes

Ĥ ′
1 = f1(t)Ĥ01 (19)

with

f1(t) = B1(t) Ĥ01 = iÎ0 − i 1
2. (20)

Now we can write the solution of the time-dependent Schrödinger equation with the
Hamiltonian (14) as follows,

91(x, t) = exp

{
− iE01

∫ t

0
f1(σ ) dσ

}
φ1(x) (21)

where

Ĥ01φ1(x) = E01φ1(x). (22)
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For concreteness, let us choose the following realization ofsu(1, 1)

Î− = − d

dx
Î0 = x

d

dx
+ 1 Î+ = x2 d

dx
+ 2x. (23)

With this realization, equation (22) becomes

i

(
x

dφ1

dx
+ 1

2φ1

)
= E01φ1. (24)

We see that the Hamiltonian̂H01 in the above equation is Hermitian. Furthermore, under
the realization (23) the Hamiltonian (14) is also Hermitian if the functions in (14) satisfy

Im{C1(t)} = −B1(t)

2
(25)

and A1(t) is real. It should be pointed out that the model (14) is not only significant
in the methodology, but also is meaningful in physics. In fact, the Hamiltonian (14)
stands for a quantum system with position-dependent effective mass,m = (2A1x)

−1,
under realization (23). The position-dependent mass problem is known associating with
the theory of semiconductor heterostructures and inhomogeneous crystals [14] in the last
decade. Recently, it has attracted much attention and some approaches have been considered
[15]. The solution of equation (24) is

φ1E = 1√
2π
x−iE01− 1

2 . (26)

Substituting (28) and (23) into (21), we obtain the wavefunction of the system with the
Hamiltonian (14)

91E(x, t) = 1√
2π

exp

{
U1(t)

(
x

d2

dx2
+ d

dx

)
+ v1(t)

}
× exp

{
−iE01

∫ t

0
B1(σ ) dσ

}
x−iE01− 1

2 . (27)

From (17) and (18), we can deriveu1(t) andv1(t) as follows:

u1(t) = exp

[ ∫ t

0
B1(σ ) dσ

]{
i
∫ t

0
A1(σ ) exp

[
−

∫ σ

0
B1(ρ) dρ

]
dσ + u1(0)

}
(28)

v1(t) =
∫ t

0
{iC1(σ )− 1

2B1(σ )} dσ + v1(0). (29)

The wavefunction (27) can now be written

91E(x, t) = 1√
2π

exp

{
− iE01

∫ t

0
B1(σ ) dσ +

∫ t

0
[iC1(σ )− 1

2B1(σ )] dσ

}
× exp

{
−u1(t)

(
x

d2

dx2
+ d

dx

)}
x−iE01− 1

2

= 1√
2π

exp

{
− iE01

∫ t

0
B1(σ ) dσ +

∫ t

0
[iC1(σ )− 1

2B1(σ )] dσ

}
×

+∞∑
n=0

n∏
l=0

(iE + 1
2 + l)2[−u1(t)]

n x
−iE01−n− 1

2

n!
. (30)
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According to [11], the diabatic energy level reads

E1(t) = 〈91E(t)|Ĥ1|91E(t)〉
〈91E|91E〉

= B1(t)E01 + i
〈ψ1E(t)|U+∂tU |ψ1E(t)〉

〈ψ1E|U+U |ψ1E〉

= B1(t)E01 + iu̇1
〈φ1E|U+

1 U1Î0Î−|φ1E〉
〈φ1E|U+U |φ1E〉 + iv̇1(t). (31)

With the initial conditionU1(r̂, p̂, 0) = 1, which implies that

u1(0) = 0 v1(0) = 0 (32)

from (28) and (23) we can show that the transformation (15) is indeed unitary. Therefore,

E1(t) = B1(t)E01 + iv̇1(t)+ iu̇1(t)
〈φ1E|Î0Î−|φ1E〉

〈φ1E|φ1E〉 . (33)

Using (18), (20) and (22) and the commutation relation of the operators ofsu(1, 1), we find

E1(t) = B1(t)E01 − C1(t)− 1
2iB1(t). (34)

When the functionsB1(t) and C1(t) satisfy equation (25), i.e. the Hamiltonian (14) is
Hermitian, the diabatic energy becomes

E1(t) = B1(t)E01 + Re[C1(t)]. (35)

Using (13), it can be shown that the Berry Phase [13] of the present time-dependent quantum
system is zero although the parameter functions evolve periodically.

Now let us consider another time-dependent quantum system with the Hamiltonian

Ĥ2(t) = A2(t)Î
2
− + iB2(t)Î0 + C2(t) (36)

whereA2(t) andB2(t) are two real functions oft andC2(t) is a complex function. For this
system, we choose the transformation to be

U2 = exp{u2(t)Î0 + v2(t)}. (37)

According to (4), the transformed Hamiltonian of (36) is given as

Ĥ ′
2 = A2(t) exp[2u2(t)]Î

2
− + i(B2 − u̇2(t))Î0 + (C2 − iv̇2). (38)

If u2(t) andv2(t) satisfy the equations

u̇2(t)− B2(t) = 0 (39)

iv̇2(t)+ 2µA2(t) exp[2u2(t)] = C2(t) (40)

the Hamiltonian (38) becomes

Ĥ ′
2(t) = f2(t)Ĥ02 (41)

where we define

f2(t) = −2A2(t) exp[2u2(t)] H02 = − 1
2 Î

2
− + µ. (42)

In (40),µ is a constant. The solutions of (39) and (40) are as follows,

u2(t) =
∫ t

0
B2(σ ) dσ (43)

v2(t) = −i
∫ t

0
dσ

{
C2(σ )− 2µA2(σ ) exp

[
2

∫ σ

0
B2(ρ) dρ

]}
(44)
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in which we have used the initial conditionsu2(0) = 0 andv2(0) = 0 in deriving (43)
and (44). These conditions are consistent withU(r̂, p̂, 0) = 1.

From (3), we find the wavefunction of the time-dependent system with Hamiltonian (36)
as

92(x, t) = exp[u2(t)I0 + v2(t)] exp

[
− iE02

∫ t

0
f2(σ ) dσ

]
φ2(x) (45)

whereφ2(x) is a solution of the equation

Ĥ02φ2(x) = E02φ2(x). (46)

Under the realization (23), the Hamiltonian in (46) can be written as(b = 0)

Ĥ02 = 1
2p̂

2 + µ.

Then the solutions of (46) are

E02 = E01k = 1
2k

2 + µ (47)

φ2(x) = φ2k(x) = 1√
2π

exp(ikx). (48)

Finally, we obtain the wavefunction (45) as follows:

92k(x, t) = 1√
2π

exp

{
i2( 1

2k
2 + µ)

∫ t

0
A2(σ ) exp

[
2

∫ σ

0
B2(ρ) dρ

]
dσ

}
× exp

{
− i

∫ t

0
dσ

[
C2(σ )− 2µA2(σ ) exp

[ ∫ σ

0
B2(ρ) dρ

]]}
× exp

{[ ∫ t

0
B2(σ ) dσ

]
x

d

dx

}
exp(ikx). (49)

From (10), (37), and (49), the diabatic energy level is given by

E2k(t) = f2(t)E02k + Re[C2(t)] − 2µA2(t) exp

{
2

∫ t

0
B2(σ ) dσ

}
. (50)

Using (13), we can show that the non-adiabatic Berry phase [13] of the present system is
also zero even though the parameters in (36) are periodic functions of time.

On the other hand, we would like to point out that our discussion for the system (36) is
different from [9] in some respects. The authors of [3] showed that the quantum mechanical
evolution generated by the Hamiltonian, which is a quadratic polynomial in coordinateq and
momentump with time-dependent coefficients, is determined by a unitary implementation
of the phase flow of the corresponding classical Hamiltonian and studied the spectrum of the
Floquet operator. In our paper, we suggest an approach to find out a unitary transformation
for the system.

In conclusion, we have studied the time-dependent systems in which the Hamiltonian
contains the quadratic terms of the generators ofsu(1, 1) by means of the algebraic dynamics
approach. With the proper choice of transformation, we have analytically found out the exact
solutions of these systems. The non-adiabatic Berry phase of these systems have also been
calculated. The results have shown that the Berry phases are zero although the parameters in
the Hamiltonians are periodic functions of time. The present study shows that the algebraic
dynamics approach to time-dependent quantum systems is not only effective for the cases
in which the Hamiltonian is a linear function of the generators of an algebra, but also for
the cases that the Hamiltonian is a nonlinear function of the operators.
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